

Rotating Objects

- When an object rotates, all the points along the radius move through the same angle in the same amount of time.
- Therefore, the linear velocity will be different depending on the distance from the center (radius).

Uniform Circular Motion

- An object that moves in a circle at constant tangential (linear) speed v, is said to experience uniform circular motion.
- The speed may be constant but the direction is changing.
- This means that the object is accelerating.
- The acceleration is in the direction of the change in velocity.
- The direction of the acceleration is towards the center of the circular path.

- This acceleration is called centripetal acceleration (towards the center or

Deriving an Equation for Centripetal Acceleration

- During Δt the object moves
from B to C
- Connecting these points to the center gives triangle $A B C$.
$a=\frac{\Delta v}{\Delta t}$
$\Delta v=v_{2}-v_{1}$
- The vector subtraction gives triangle $P Q R$.
- $v_{1}=v_{2}=v$

OpenStax, Rice University (CC BY 4.0) center seeking).
\qquad

- The two triangles are similar triangles, therefore

$$
\frac{\Delta v}{v}=\frac{\Delta r}{r}
$$

- Solving for Δv

$$
\Delta v=\frac{v \Delta r}{r}
$$

- Divide both sides by Δt

$$
\frac{\Delta v}{\Delta t}=a \begin{gathered}
\frac{\Delta v}{\Delta t}=\frac{v \Delta r}{r \Delta t} \\
a_{c}=\frac{v^{2}}{r}
\end{gathered} \quad \frac{\Delta r}{\Delta t}=v
$$

Period and Frequency

- The concepts of period and frequency are often used with circular motion.
- The period, T, is the time required for one rotation.
- The frequency, f, is the number of rotations per second.

$$
T=\frac{1}{f}
$$

- It is also useful to express centripetal acceleration in terms of angular velocity, \qquad period and frequency.

Substituting $v=\frac{2 \pi r}{T}$ into the expression for centripetal
$a_{c}=\frac{4 \pi^{2} r}{T^{2}}$ acceleration

Substituting $f=\frac{1}{T} \quad a_{c}=4 \pi^{2} r f^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 1

- A car drives around a curve of radius \qquad 500.0 m at a speed of $25 \mathrm{~m} / \mathrm{s}$. Calculate the centripetal acceleration.

$$
\begin{aligned}
a_{c} & =\frac{v^{2}}{r} \\
a_{c} & =\frac{(25)^{2}}{500} \\
a_{c} & =1.25 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 2

- A 150 g ball at the end of a string is revolving in a horizontal circle of radius 0.60 m . The ball makes 2 revolutions in one second. Calculate the centripetal acceleration of the ball.
$a_{c}=\frac{v^{2}}{r}=\frac{(2 \pi r)^{2}}{r T^{2}}=4 \pi^{2} r f^{2}$
$a_{c}=4 \pi^{2}(0.6)(2)^{2}=95 \mathrm{~m} / \mathrm{s}^{2}$

Centripetal Force

- Any force or combination of forces can cause a centripetal or radial acceleration.
- Any net force causing uniform circular motion is called a centripetal force.
- The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration.
- According to Newton's second law of motion, $F_{\text {net }}=m a$
- For uniform circular motion, the acceleration is the centripetal acceleration ($a=a_{c}$).
- Thus, the magnitude of centripetal force is

$$
\begin{gathered}
F_{c}=m a_{c} \\
\text { or } \\
F_{c}=\frac{m v^{2}}{r}
\end{gathered}
$$

Example

- A 1200 kg car travels around a 500.0 m radius unbanked curve at $25.0 \mathrm{~m} / \mathrm{s}$. Calculate the minimum static coefficient of friction between the tires and the road required to keep the car from slipping.

Banked Curves

- Highway and racetrack curves are not flat, they are banked.

- Highway curves are typically banked a maximum of $3.5^{\circ}-4.5^{\circ}$.
- NASCAR race track curves vary:
- Talladega Superspeedway - 33°
- Daytona International Speedway - 31°
- Indianapolis Motor Speedway - 9°

Car: tagawa (OpenClipArt)
\qquad

Velocrome - khaleel (Pexels)
Car - mibro (Pixabay)
Talladega Panorama - Brian Cantoni (CC BY 2.0)

Why bank a curve?

\qquad
\qquad
\qquad
\qquad
\qquad

- Friction and the normal force contribute to the centripetal force, allowing higher \qquad speeds around the curve.

Type of Curve	Maximum Speed in Curve
Flat with friction	$\sqrt{g r \mu}$
Banked without friction	$\sqrt{g r \tan \theta}$
Banked with friction	$\sqrt{g r\left(\frac{\sin \theta+\mu \cos \theta}{\cos \theta-\mu \sin \theta}\right)}$

